La fase móvil es líquida y la fase estacionaria consiste en un sólido. La fase estacionaria será un componente polar y el eluyente será por lo general menos polar que la fase estacionaria, de forma que los componentes que se desplacen con mayor velocidad serán los menos polares.
Polaridad de los compuestos orgánicos en orden creciente:
hidrocarburos < olefinas < fluor < cloro < nitro < aldehído
aldehído < ester < alcohol < cetonas < aminas < ácidos < amidas
Ventajas de la cromatografía en capa fina
La cromatografía en capa fina presenta una serie de ventajas frente a otros métodos cromatográficos (en columna, en papel, en fase gaseosa, ...) ya que el utillaje que precisa es más simple. El tiempo que se necesita para conseguir las separaciones es mucho menor y la separación es generalmente mejor. Pueden usarse reveladores corrosivos, que sobre papel destruirían el cromatograma. El método es simple y los resultados son fácilmente reproducibles, lo que hace que sea un método adecuado para fines analíticos.
Es una cromatografíaque utiliza la alta especificidad de las reacciones biológicas del tipo antígeno-anticuerpo, hormona-receptor…Para ello un ligando de afinidad se une al soporte de la FE. Cuando la muestra atraviese la columna solo se retendrá la sustancia capaz de reaccionar con dicho ligando.Una vez concluida la separación hay que provocar la salida de la sustancia que dio la reacción específica.
CROMATOGRAFIA DE INTERCAMBIO IONICO
La Cromatografía líquida de alta eficacia o High performance liquid chromatography (HPLC) es un tipo de cromatografía en columna utilizada frecuentemente en bioquímica y química analítica. También se la denomina a veces Cromatografía líquida de alta presión o High pressure liquid chromatography (HPLC), aunque esta terminología se considera antigua y está en desuso. El HPLC es una técnica utilizada para separar los componentes de una mezcla basándose en diferentes tipos de interacciones químicas entre las sustancias analizadas y la columna cromatográfica.
Tipos de HPLC
Cromatografía de fase normal
La cromatografía de fase normal o "Normal phase HPLC" (NP-HPLC) fue el primer tipo de sistema HPLC utilizado en el campo de la química, y se caracteriza por separar los compuestos en base a su polaridad. Esta técnica utiliza una fase estacionaria polar y una fase móvil apolar, y se utiliza cuando el compuesto de interés es bastante polar. El compuesto polar se asocia y es retenido por la fase estacionaria. La fuerza de absorción aumenta a medida que aumenta la polaridad del compuesto y la interacción entre el compuesto polar y la fase estacionaria polar (en comparación a la fase móvil) aumenta el tiempo de retención.
La fuerza de interacción no sólo depende de los grupos funcionales del compuesto de interés, sino también en factores estericos de forma que los isómeros estructurales a menudo se pueden diferenciar el uno del otro. La utilización de disolventes más polares en la fase móvil disminuye el tiempo de retención de los compuestos mientras que los disolventes más hidrofóbicos tienden a aumentar el tiempo de retención.
La NP-HPLC cayó en desuso a los años setenta con el desarrollo del HPLC de fase reversa o Reversed-phase HPLC debido a la falta de reproductibilidad de los tiempos de retención puesto que los disolventes próticos cambiaban el estado de hidratación de la silica o alúmina de la cromatografía.
La HPLC de fase reversa (RP-HPLC) consiste en una fase inmóvil apolar y una fase móvil de polaridad moderada. Una de las fases estacionarias más comunes de este tipo de cromatografía es la silica tratada con RMe2SiCl, dónde la R es una cadena alquil tal como C18H37 ó C8H17. El tiempo de retención es mayor para las moléculas de naturaleza apolar, mientras que las moléculas de carácter polar eluyen más rápidamente.
El tiempo de retención aumenta con la adición de disolvente apolar a la fase móvil y disminuye con la introducción de disolventes mas hidrofobicos. La cromatografía de fase reversa es tan utilizada que a menudo se lo denomina HPLC sin ninguna especificación adicional. La cromatografía de fase reversa se basa en el principio de las interacciones hidrofóbicas que resultan de las fuerzas de repulsión entre un disolvente relativamente polar, un compuesto relativamente apolar, y una fase estacionaria apolar. La fuerza conductora en la unión del compuesto a la fase estacionaria es la disminución del área del segmento apolar del analito expuesto al disolvente.Este efecto hidrofóbico está dominado por la disminución de la energía libre de la entropía asociada con la minimización de la interfase compuesto-disolvente polar. El efecto hidrofóbico disminuye con la adición de disolvente apolar a la fase móvil. Esto modifica el coeficiente de partición de forma que el compuesto se mueve por la columna y eluye.
Las características del compuesto de interés juegan un papel muy importante en la retención. En general, un compuesto con una cadena alquil larga se asocia con un tiempo de retención mayor porque aumenta la hidrofobicidad de la molécula. Aun así, las moléculas muy grandes pueden ver reducida la interacción entre la superficie del compuesto y la fase estacionaria. El tiempo de retención aumenta con el área de superficie hidrofóbica que suele ser inversamente proporcional al tamaño del compuesto. Los compuestos ramificados suelen eluir más rápidamente que sus isómeros lineales puesto que la superficie total se ve reducida.
Aparte de la hidrofobicidad de la fase móvil, otras modificaciones de la fase móvil pueden afectar la retención del compuesto; por ejemplo, la adición de sales inorgánicas provoca un aumento lineal en la tensión superficial, y como que la entropía de la interfase compuesto-disolvente está controlada precisamente por la tensión superficial, la adición de sales tiende a aumentar el tiempo de retención.
Otra variable importante es el pH puesto que puede cambiar la hidrofobicidad del compuesto. Por este motivo, la mayoría de métodos utilizan un tampón como el fosfato de sodio para controlar el valor del pH. Estos tampones controlan el pH, pero también neutralizan la carga o cualquiera resto de silica de la fase estacionaria que haya quedado expuesta y actúan como contraiones que neutralizan la carga del compuesto. El efecto de los tampones sobre la cromatografía puede variar, pero en general mejoran la separación cromatográfica.
Las columnas de fase reversa se echan a perder con menor facilidad que las columnas de silica normales. Aun así, muchas columnas de fase reversa están formadas por silica modificada con cadenas alquil y no se deben utilizar nunca con bases en medio acuoso puesto que éstas podrían dañar el esqueleto de silica subyacente. Las columnas se pueden utilizar en ácidos en medio acuoso pero no deberían estar expuestas demasiado tiempo al ácido porque puede corroer las partes metálicas del aparato de HPLC.
Cromatografía de exclusión molecular
La cromatografía de exclusión molecular, también conocida como cromatografía por filtración en gel, separa las partículas de la muestra en función de su tamaño. Generalmente se trata de una cromatografía de baja resolución de forma que se suele utilizar en los pasos finales del proceso de purificación. También es muy útil para la determinación de la estructura terciaria y la estructura cuaternaria de las proteínas purificadas.
La cromatografía de filtración molecular es un método de cromatografía en columna por el cual las moléculas se separan en solución según su peso molecular, o más precisamente, según su radio de Stokes.
En esta cromatografía, la fase estacionaria consiste en largos polímeros entrecruzados que forman una red tridimensional porosa. A los fines prácticos, la columnas se empaquetan con pequeñas partículas esferoidales formadas por esos polímeros entrecruzados. En consecuencia, estas partículas son porosas, y el tamaño de los poros es tal que algunas moléculas (las demasiado grandes) no podrán ingresar a esos poros, en tanto que otras (las suficientemente pequeñas) podrán pasar libremente. Los poros quedan conectados formando una malla o red, lo cual determina una serie de caminos a ser recorridos por las moléculas que acceden al interior de esta.
Cromatografía de intercambio iónico
Artículo principal: Cromatografía de intercambio iónico
En la cromatografía de intercambio iónico, la retención se basa en la atracción electrostática entre los iones en solución y las cargas inmovilizadas a la fase estacionaria. Los iones de la misma carga son excluidos mientras que los de carga opuesta son retenidos por la columna. Algunos tipos de intercambiadores iónicos son: i) Resinas de poliestireno, ii) intercambiadores iónicos de celulosa y dextranos (geles) y iii) Silica porosa o vidrio de tamaño de poro controlado. En general los intercambiadores iónicos favorecen la unión de iones elevada carga y radio pequeño. Un incremento en la concentración del contraión (respeto a los grupos funcionales de la resina) reduce el tiempo de retención. Un incremento en el pH reduce el tiempo de retención en las cromatografías de intercambio catiònico mientras que una disminución del pH reduce el tiempo de retención en las cromatografías de intercambio aniònic. Este tipo de cromatografía es ampliamente utilizado en las siguientes aplicaciones: purificación de agua, concentración de componentes traza, Ligand-exchange chromatography, Ion-exchange chromatography of proteins, High-pH anion-exchange chromatography of carbohydrates and oligosaccharides, etc.
Esta es una técnica absoluta y muy confiable ya que realiza el barrido de todos los congéneres basándose en el hecho de que la muestra es una familia de isómeros. Los isómeros son dos o más moléculas que tienen el mismo peso molecular pero diferente estructura. Al barrer electrónicamente solamente 10 pesos moleculares se obtiene un resultado absoluto. Sin lugar a dudas este es el medio más seguro para detectar y cuantificar BPCs.
ESPECTROMETRIA INMUNODETECCION ELISA
Introducción
La técnica ELISA (Enzyme Linked Inmunoabsorvent Assay) se basa en la detección de un antígeno inmovilizado sobre una fase sólida mediante anticuerpos que directa o indirectamente producen una reacción cuyo producto, por ejemplo un colorante, puede ser medido espectofotométricamente. Este principio tiene muchas de las propiedades de un inmunoensayo ideal : es versátil, robusto, simple en su realización, emplea reactivos económicos y consigue, mediante el uso de la fase sólida, de una separación fácil entre la fracción retenida y la fracción libre.
Además se han propuesto y desarrollado diferentes métodos de amplificación de la señal (luminiscentes, cascadas enzimáticas,...) que han permitido elevar la sensibilidad de algunos ELISA a la obtenida en el RIA (radioinmunoensayo) hormonal.
Este método ha tenido una enorme aplicación en todos aquellos campos en los que se precisaba la cuantificación de productos mediante anticuerpos : diagnóstico clínico, detección viral, clasificación de anticuerpos en isotipos, búsqueda de anticuerpos monoclonales, etc..
Se han ensayado numerosas fases sólidas, desde los tubos de cristal de los orígenes a las actuales microplacas de 96 pocillos de plástico tratado para aumentar su capacidad de absorción de moléculas y con fondos de pocillo ópticamente claros para poder realizar las medidas de densidad óptica en instrumentos específicos, espectrofotómetros de lectura de placas que han recibido el nombre de lectores ELISA. Actualmente se están desarrollando dispositivos de mayor capacidad, por ejemplo con 384 y 1536 pocillos, adecuados para los sistemas de 'screening' masivo de los sistemas robotizados (HTS, 'High troughput system')
Los lectores ELISA son espectrofotómetros capaces de realizar lecturas seriadas de cada uno de los pocillos de la placa ELISA. A diferencia de un espectrofotómetro convencional, con capacidad de leer todas las longitudes de onda del ultravioleta y el visible de manera continua, los lectores de ELISA disponen de sistemas de filtros que sólo permiten la lectura de una o pocas longitudes de onda. Son la que se corresponden con las necesarias para determinar la densidad óptica de los cromógenos más comúnmente utilizados.
- arriba -
Las 4 fases de un ensayo ELISA son las siguientes :
Conjugación del anticuerpo o del antígeno con un enzima (peroxidasa, fosfatasa alcalina,...). El anticuerpo conjugado al enzima se emplea en los ensayos directos e indirectos, sandwich, etc.. El antígeno marcado se emplea en ensayos de competición de antígeno.
Unión del antígeno (o del anticuerpo) a los pocillos. La unión de anticuerpos o antígenos se realiza con facilidad a la superficie de plásticos tratados que tienen gran afinidad por proteínas.
Formación de una o más capas de inmunocomplejos. En el caso del antígeno unido a la placa se puede detectar mediante un anticuerpo anti-antígeno marcado (ELISA directo) o empleando un anticuerpo primario anti-antígeno y un secundario anti primario marcado (ELISA indirecto). Este segundo método permite la amplificación de la señal al poderse unir uno o más anticuerpos secundarios a cada anticuerpo primario. En el caso del anticuerpo unido a la placa se incuba con una mezcla de antígeno y antígeno marcado. Se ensayan diferentes relaciones de antígeno frio frente a una cantidad fija de antígeno marcado. Es el ensayo de competición del antígeno.
Revelado de la reacción enzimática. Después de un lavado para eliminar todos las moléculas marcadas no fijadas en forma de inmunocomplejos se añade el sustrato enzimático en solución. Se deja reaccionar y se lee la densidad óptica (D.O.) mediante espectrofotometría. En el esquema se muestra la reacción asociada a un ELISA directo.
- arriba -
Tipos de ensayos ELISA
Se han desarrollado múltiples variantes de ensayos ELISA que permiten desde la cuantificación de un antígeno en solución, la detección de un anticuerpo en una solución (por ej. en el clonaje de anticuerpos monoclonales), o la determinación de la subclase (idiotipo) de un anticuerpo. A continuación se describen los más comunes.
ELISA directo (ensayo ELISA simple de dos capas). Las placas ELISA se preparan recubriendo los pocillos con las soluciones en las que se sospecha se encuentra el antígeno. Se incuban con anticuerpos marcados. Indican la presencia de antígeno en la solución analizada. Es necesario incluir controles negativos que serán muestras del mismo tipo de las analizadas (sangre, orina, ...) pero en las que se tenga la certeza de la ausencia del antígeno buscado. Asimismo se incluyen controles positivos (soluciones donde se encuentra el antígeno buscado, o bien se le ha añadido).
ELISA indirecto. Las placas ELISA se preparan de una forma idéntica a la anterior. Los controles positivos y negativos son los mismos. El sistema de detección emplea dos anticuerpos : uno primario contra el antígeno, y uno secundario marcado contra el primario. La detección tiene mayor sensibilidad por presentar una amplificación de señál debida a la unión de dos o más anticuerpo secunadarios por cada primario. Es el ensayo más popular, como lo es la inmunofluorescencia indirecta, pues un mismo secundario marcado y un mismo sistema enzimático permite cuantificar una gran cantidad de antígenos.
ELISA 'sandwich'. (ensayo de captura de antígeno y detección mediante inmunocomplejos). Se trata de un ensayo muy empleado en el que se recubre el pocillo con un primer anticuerpo anti-antígeno. Después de lavar el exceso de anticuerpo se aplica la muestra problema en la que se encuentra el antígeno, que será retenido en el pocillo al ser reconocido por el primer anticuerpo. Después de un segundo lavado que elimina el material no retenido se aplica una solución con un segundo anticuerpo anti-antígeno marcado. Así pues cada molécula de antígeno estará unida a un anticuerpo en la base que lo retiene y un segundo anticuerpo, al menos, que lo marca. Este ensayo tiene una gran especificidad y sensibilidad debido a la amplificación de señal que permite el segundo anticuerpo
CENTRIFIGURACION
La centrifugación es un método por el cual se pueden separar sólidos de líquidos de diferente densidad mediante una fuerza rotativa , la cual imprime a la mezcla con una fuerza mayor que la de la gravedad, provocando la sedimentación de los sólidos o de las partículas de mayor densidad. Este es uno de los principios en los que la densidad: Todas lículas, por posa, sectadas por cualquier y una extensa variedad de técnicas derivadas de esta. Donde la fuerza es mayor a la gravedad.
Los aparatos en los que se lleva a cabo la centrifugación son las centrífugas. Una centrífuga tiene dos componentes esenciales: rotor (donde se coloca la muestra a centrifugar) y motor. Existen dos tipos de rotores:
De ángulo fijo: Los tubos se alojan con un ángulo fijo respecto al eje de giro. Se usa para volúmenes grandes.
Basculante: Los tubos se hallan dentro de unas carcasas que cuelgan. Estas carcasas están unidas al rotor con un eje y cuando la centrífuga gira, se mueven. Se usan para volúmenes pequeños y para separar partículas con un mismo o casi igual coeficiente de sedimentación.
Las centrífugas están metidas en el interior de una cámara acorazada a unos 4ºC. Si esta cámara no estuviese presente, al comenzar la centrifugación, y debido al rozamiento con el aire, subiría la temperatura de la muestra y podría llegar a desnaturalizarse.
Una centrífuga debe tener las masas de las muestras compensadas unas con otras. En caso contrario, la centrífuga podría "saltar por los aires". Aunque hoy en día, para que esto no ocurra, casi todas las centrífugas se detienen si las masas no están compensadas.
Existen dos grandes grupos de centrífugas:
Analíticas: Con las que se obtienen datos moleculares (masa molecular, coeficiente de sedimentación, etc.). Son muy caras y escasas.
Preparativas: Con las que se aíslan y purifican las muestras. Hay 4 tipos de centrífugas preparativas:
De mesa: Alcanzan unas 5.000 rpm (revoluciones por minuto). Se produce una sedimentación rápida. Hay un subtipo que son las microfugas que llegan a 12.000-15.000 rpm. Se obtiene el precipitado en muy poco tiempo.
De alta capacidad: Se utilizan para centrifugar volúmenes de 4 a 6 litros. Alcanzan hasta 6.000 rpm. Son del tamaño de una lavadora y están refrigeradas.
De alta velocidad: Tienen el mismo tamaño que las de alta capacidad y llegan a 25.000 rpm.
Ultracentrífugas: Pueden alcanzar hasta 100.000 rpm. También están refrigeradas. Son capaces de obtener virus.
CENTRIFIGURACION DE GRADIENTE
CENTRIFUGACION DIFERENCIAL
A.- Centrifugación diferencial.En este método, el tubo de centrífuga se llena con una mezcla uniforme problema. Tras la centrifugación se obtienen dos fracciones: un pellet que contiene el material sedimentado y un sobrenadante con el material no sedimentado. Es una técnica muy útil, sobre todo para aislamiento de células y orgánulos subcelulares. Es un tipo de separación logrado en base al tamaño de las partículas.Esta técnica consiste en someter a una muestra heterogénea de partículas a fuerzas de centrifugación crecientes por períodos de tiempo crecientes. Los precipitados obtenidos luego de cada centrifugación estarán enriquecidos en una determinada partícula.Para lograr la separación, los coeficientes de sedimentación de las partículas deben diferir en al menos un factor de tres (moléculas con s mayores precipitan primero).La centrifugación es un método que utiliza la propiedad de sedimentación de partículas con base en la masa de las moléculas para la separación de partículas de una solución. Una vez obtenido el lisado o homogenado celular se ha de proceder a su fraccionamiento. Una de las técnicas más empleadas es la centrifugación. Se basa en hacer girar el tubo a gran velocidad de forma que se produzca la acumulación en el fondo del mismo de las partículas que tienden a hundirse por tener una densidad menor que la del medio en que se encuentran. Así, después de la centrifugación la muestra, homogénea, se habrá separado en dos fracciones : sobrenadante (supernatant), fracción homogénea que no ha sedimentado, y el sedimento (pellet) que ha quedado adherida al fondo del tubo.
ULTRACENTRIFUGACION
Ultracentrifugación: una técnica de separación bioquímica
Consideremos una solución que contiene diferentes tipos de macromoléculas biológicas
como pueden ser trozos de ADN, proteínas, enzimas etc. Una técnica muy utilizada para
separar macromoléculas y organelos celulares es la ultacentrifugación. En este problema pretendemos
estudiar esta técnica. El principio de la técnica es simple; mediante un movimiento
circular uniforme, aumentamos la aceleración normal generando un campo gravitacional local
mayor. Es decir, deseamos pasar de ~a = ~g a ~a _ ~g. Como ejemplo de trabajo vamos a
estudiar la separación de la mioglobina.
1- Escriba las ecuaciones fundamentales del movimiento circular uniforme; velocidad
tangencial, velocidad angular, aceleración angular y normal, momento angular.
2- Sometemos un tubo de ensaye que contiene una solución con mioglobina y otras
macromoléculas a un movimiento circular uniforme de velocidad angular !. Así mismo,
en este tubo, las macromoléculas experimentan una fuerza de resistencia viscosa FR proporcional
a la velocidad que tienen. Suponemos también que la ley de Arquímedes (flotación)
está presente (FA). Dibuje un esquema en que representará el sistema en cuestión y las fuerzas
presentes. Demuestre que ;
dp
dt
= (_v − 1)m!2r − fv (1)
en donde p es el ímpetu o momento lineal, v es el volumen específico [l/kg], _ es la densidad
de la solución [kg/m3], r es el radio de giro del cabezal de la centrífuga, f es la resistencia
viscosa, y v la velocidad de la molécula.
Definiendo A = (_v − 1)!2r y = f/m, demuestre que la segunda ley de Newton (1)
se puede escribir;
dv
dt
= A − v (2)
Sabiendo que ! vale 50000 rpm y r=20cm, hallar el valor de la aceleración efectiva sobre
la mioglobina cuando esta molécula se halla en reposo. Compare el valor hallado con g.
Calcule la fuerza inicial sobre la molécula (ver mas datos sobre la mioglobina al final del
enunciado).
3- Demuestre entonces que ;
v =
A
(1 − e−t) (3)
es solución de la expresión (2).
1
4- Muestre que la velocidad límite de la macromolécula es vL=A/. Compruebe que A/
tiene unidades de velocidad.
5- Muestre que la velocidad límite, llamada también velocidad de sedimentación puede
escribirse de la manera siguiente;
vL =
(_v − 1)!2rM
Nf
(4)
en donde M es la masa molecular de la mioglobina y N el número de Avogadro.
6- Definimos el coeficiente de sedimentación s por;
s =
v
!2r
=
(1 − _v)M
Nf
(5)
y el Svedberg (Sv) como 1Sv=10−13s. Muestre que las unidades de s son, en efecto, unidades
de tiempo.
7- Definimos también la relación de fricción f/f0 como la relación comparativa entre f real
y f si se tratara de una esfera que no tiene asociación con el solvente (f0). f0 está dada por la
ley de Stokes;
f0 = 6__R (6)
en donde _ es la viscosidad de la solución y R el radio de la esfera que representa la molécula.
Demuestre que f0 se puede escribir como ;
f0 = 6__
_
3Mv
4_N
_1/3
(7)
Calcule el coeficiente de sedimentación s (en Svedbergs) a 20_C y compare con el valor
reportado de 2.0 Sv.
8- Hallar la velocidad límite vL con los resultados de la pregunta 2- y 7-.
Datos de la mioglobina
M=16900 g/mol
f/f0=1.105
v=0.74 l/kg